Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(5): 250, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38587660

ABSTRACT

Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.


Subject(s)
Augmented Reality , Skin , Precision Medicine , Electronics , Delivery of Health Care
2.
Sci Rep ; 14(1): 7087, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38528204

ABSTRACT

To evaluate the efficiency and effectiveness of three minimally invasive (MI) techniques in removing deep dentin carious lesions. Forty extracted carious molars were treated by conventional rotary excavation (control), chemomechanical caries removal agent (Brix 3000), ultrasonic abrasion (WOODPECKER, GUILIN, China); and Er, Cr: YSGG laser ablation (BIOLASE San Clemente, CA, USA). The assessments include; the excavation time, DIAGNOdent pen, Raman spectroscopy, Vickers microhardness, and scanning electron microscope combined with energy dispersive X-ray spectroscopy (SEM-EDX). The rotary method recorded the shortest excavation time (p < 0.001), Brix 3000 gel was the slowest. DIAGNOdent pen values ranged between 14 and 18 in the remaining dentin and laser-ablated surfaces recorded the lowest reading (p < 0.001). The Ca:P ratios of the remaining dentin were close to sound dentin after all excavation methods; however, it was higher in the ultrasonic technique (p < 0.05). The bur-excavated dentin showed higher phosphate and lower matrix contents with higher tissue hardness that was comparable to sound dentin indicating the non-selectiveness of this technique in removing the potentially repairable dentin tissue. In contrast, the MI techniques exhibited lower phosphate and higher organic contents associated with lower microhardness in the deeper dentin layers. This was associated with smooth residual dentin without smearing and patent dentinal tubules. This study supports the efficiency of using MI methods in caries removal as conservative alternatives to rotary excavation, providing a promising strategy for the clinical dental practice.


Subject(s)
Dental Caries , Lasers, Solid-State , Humans , Dentin/chemistry , Dental Caries Susceptibility , Hardness , Phosphates/analysis , Dental Caries/surgery , Dental Caries/pathology
3.
Sci Rep ; 12(1): 9902, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35701483

ABSTRACT

Crystalline silicon (c-Si) solar cells have dominated the photovoltaic industry for decades. However, due to high reflectivity and the presence of numerous types of surface contaminants, the solar cell only absorbs a limited amount of the incident solar radiation. To improve the efficiency of the solar cell, anti-reflection and self-cleaning coatings must be applied to the surface. The main objective of this work is to synthesize an amorphous carbon nitride CNx thin film as a novel dual-function anti-reflection coating (ARC) for c-Si solar cells. The CNx film was synthesized by the RF magnetron sputtering technique and characterized by different chemical, structural, and optical analysis techniques. The performance of CNx film was investigated via measuring the reflectance, photoelectric conversion efficiency, and external quantum efficiency. The minimum reflectance was 0.3% at 550 nm wavelength, and the external quantum efficiency achieved was more than 90% within the broad wavelength range. The open circuit voltage and short circuit current density that have been achieved are 578 mV and 33.85 mAcm-2, respectively. Finally, a photoelectric conversion efficiency of 13.05% was achieved with the coated c-Si solar cell in comparison with 5.52% for the uncoated c-Si solar cell. This study shows that CNx films have promising application potential as an efficient ARC for c-Si solar cells as compared to traditional ARC materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...